Efficient global optimization algorithm assisted by multiple surrogate techniques

نویسندگان

  • Felipe A. C. Viana
  • Raphael T. Haftka
  • Layne T. Watson
چکیده

Surrogate-based optimization proceeds in cycles. Each cycle consists of analyzing a number of designs, fitting a surrogate, performing optimization based on the surrogate, and finally analyzing a candidate solution. Algorithms that use the surrogate uncertainty estimator to guide the selection of the next sampling candidate are readily available, e.g., the efficient global optimization (EGO) algorithm. However, adding one single point at a time may not be efficient when the main concern is wall-clock time (rather than number of simulations) and simulations can run in parallel. Also, the need for uncertainty estimates limits EGO-like strategies to surrogates normally implemented with such estimates (e.g., kriging and polynomial response surface). We propose the multiple surrogate efficient global optimization (MSEGO) algorithm, which adds several points per optimization cycle with the help of multiple surrogates. We import uncertainty estimates from one surrogate to another to allow use of surrogates that do not provide them. The approach is tested on three analytic examples for nine basic surrogates including kriging, radial basis neural networks, linear Shepard, and six different instances of support vector regression. We found that MSEGO works well even with imported uncertainty estimates, delivering better results in a fraction of the optimization cycles needed by EGO. F. A. C. Viana (B) · R. T. Haftka Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA e-mail: [email protected] R. T. Haftka e-mail: [email protected] Present Address: F. A. C. Viana GE Global Research, Niskayuna, NY 12309, USA L. T. Watson Departments of Computer Science and Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA e-mail: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems

Integrating data-driven surrogate models and simulation models of di erent accuracies (or delities) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple delities in global optimization is a major challenge. To address it, the two major contrib...

متن کامل

A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and Variable Local Models for Expensive Optimization Problems

A common practice in modern engineering is that of simulation-driven optimization. This implies replacing costly and lengthy laboratory experiments with computer experiments, i.e. computationally-intensive simulations which model real world physics with high fidelity. Due to the complexity of such simulations a single simulation run can require up to several hours of CPU time of a high-performa...

متن کامل

Building Ensembles of Surrogates by Optimal Convex Combination

When using machine learning techniques for learning a function approximation from given data it can be difficult to select the right modelling technique. Without preliminary knowledge about the function it might be beneficial if the algorithm could learn all models by itself and select the model that suits best to the problem, an approach known as automated model selection. We propose a general...

متن کامل

Application of Metamodel-assisted Multiple-gradient Descent Algorithm (mgda) to Air-cooling Duct Shape Optimization

MGDA stands for Multiple-Gradient Descent Algorithm was introduced in [1]. In a previous report [2], MGDA was tested on several analytical test cases and also compared with a well-known Evolution Strategy algorithm, Pareto Archived Evolution Strategy (PAES) [3]. Using MGDA in a multi-objective optimization problem requires the evaluation of a substantial number of points with regard to criteria...

متن کامل

Surrogate-assisted evolutionary computation: Recent advances and future challenges

Surrogate-assisted, or meta-model based evolutionary computation uses efficient computational models, often known as surrogates or meta-models, for approximating the fitness function in evolutionary algorithms. Research on surrogate-assisted evolutionary computation began over a decade ago and has received considerably increasing interest in recent years. Very interestingly, surrogate-assisted ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Global Optimization

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2013